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Abstract: Robust fitting methods, intended for data sets possibly contaminated with invalid observations, are gaining
increased use in analysis of fishery data. In particular, the method of least median of squares (LMS) has attracted
attention. Its hallmark is high statistical resistance, which makes it immune to up to 50% contamination in the data.
However, the same property makes it inefficient and can cause faulty fitting of typical fishery data. The LMS fit can be
in conflict with important sections of a time series, a problem we illustrate by fitting a biomass dynamic (surplus
production) model to simulated and actual fishery data. Additionally, we illustrate that LMS parameter estimates can be
highly sensitive to small perturbations in the data. Other robust methods, like the method of least absolute values
(LAV), appear less prone to such problems. A key reference on LMS recommends using the method as part of an
exploratory procedure to identify outliers, rather than as an objective function for final model fitting. We concur with
that recommendation.

Résumé : Les méthodes d’ajustement robustes destinées aux ensembles de données potentiellement contaminées par
des observations invalides sont de plus en plus utilisées dans l’analyse des statistiques de pêche. En particulier, la
méthode des moindres médianes des erreurs au carré (LMS) a suscité beaucoup d’intérêt. Sa caractéristique principale
est sa forte résistance statistique qui lui permet de supporter une contamination représentant jusqu’à 50 % des données.
Cependant, cette même caractéristique la rend inefficace et peut occasionner un mauvais ajustement de données du type
généralement obtenu dans les pêches. L’ajustement de LMS peut être en désaccord avec de longues sections des séries
temporelles; c’est un problème que nous illustrons en ajustant un modèle dynamique de biomasse (de production
excédentaire) à des données simulées et réelles de pêche. De plus, nous démontrons que les estimations des paramètres
de LMS peuvent être très sensibles à de petites perturbations dans les données. D’autres méthodes robustes, telles que
la méthode des moindres valeurs absolues (LAV), semblent moins sujettes à ces problèmes. Un travail essentiel sur les
LMS recommande d’ailleurs d’utiliser la méthode comme une des procédures exploratoires pour identifier les données
aberrantes, plutôt que comme fonction objective pour l’ajustement final du modèle. C’est là une recommandation que
nous entérinons.

[Traduit par la Rédaction] Shertzer and Prager 1481

Introduction

Most fishery models are fit, in whole or in part, by least-
squares (LS) estimation. Some models explicitly use LS as
the objective function; others use maximum likelihood or con-
ditional maximum likelihood, which in many cases are equiv-
alent to LS. Least squares has an extensive literature, and its
estimates have many attractive features; however, a widely
recognized drawback of LS is its sensitivity to outlying values
(Rousseeuw and Leroy 1987). Thus, in a relatively small data
set, typical in fishery work, a single outlying observation that
results in a large residual (or a few such observations) can
have relatively strong influence (in the ordinary sense) on the
resulting estimates. In many cases, one would prefer that the

most outlying points not have such great influence, and it is
for such cases that robust fitting methods have been devised.

When errors satisfy the Gauss–Markov assumptions of in-
dependence and identical N(0,σ2) distribution, LS is optimal
in linear regression in the sense of providing minimum vari-
ance, unbiased estimates (Casella and Berger 1990). Because
of its desirable properties in linear fitting, LS is widely used
in nonlinear fitting, as well. However, real data sets often vi-
olate the Gauss–Markov assumptions, and that can have sub-
stantial effects on the LS parameter estimates. In particular,
data used in stock assessments are likely to violate those as-
sumptions because of large measurement and process errors
(Hilborn and Walters 1992) that may not be normally dis-
tributed, even under transformation. Poorly defined error
structure and the widespread existence of outliers in fishery
data sets make robust methods attractive for fitting stock as-
sessment models (Chen and Jackson 1995, 2000).

There are two approaches to using robust methods to re-
duce the impact of outliers (Rousseeuw and Leroy 1987). The
first approach identifies outliers based on the residuals from a
robust model fit. Once identified, outliers are corrected, re-
moved, or downweighted; then the “good” data are refit using
standard LS methods. This approach was illustrated in fishery
analyses by Chen and Paloheimo (1994), Restrepo and Powers
(1997), and Prager (2002), among others.
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The second approach to using robust methods simply re-
places the LS objective function with one less sensitive to
outliers, i.e., a robust objective function. That approach was
illustrated by Chen and Andrew (1998), who proposed use
of least median of squares (LMS) as a “potentially useful ad-
dition to methods used to fit production models to abun-
dance index and catch data”. That paper has been influential:
in a recent working group, we observed analysts using LMS
as the objective function for production models, citing Chen
and Andrew (1998). We found that alarming, because prob-
lems can arise with such uses of LMS. The goals of this paper
are to illustrate those problems and to discourage the use of
LMS as a replacement for standard methods of model fitting.

LMS
The method of LMS is a well-known robust fitting method.

As with any regression, the goal of LMS is to estimate p
model parameters, � = (θ1,…,θp), from the data. A LMS es-
timate �� is one that minimizes the objective function

(1) median 2ri , i = 1,2,..., n

where the residuals, ri, are the differences between observed
and predicted responses.

LMS is devised to have a high breakdown point, usually
defined as the smallest percentage of “contaminated” data
needed to shift the estimate by an arbitrary amount
(Rousseeuw and Leroy 1987). In linear regression, the LMS
breakdown point is 50%; the corresponding LS breakdown
point is zero (Rousseeuw 1984).

Other robust methods
Ordinary least squares falls under the more general cate-

gory of M estimators (Rousseeuw and Leroy 1987; Berk
1990). Such estimators are based on minimizing an objective
function of the form

(2) ρ
i

n

ir
=
∑

1

( )

where ρ is a symmetric function with a unique minimum at
zero (Rousseeuw and Leroy 1987). For example, ρ(x) = x2

defines the LS objective function. Other functions can be
used that reduce the influence of outliers and are thus con-
sidered more robust than LS. Such functions generally in-
crease at a slower rate than a quadratic, either for all x or for
all x greater than some value. The method of LAV (Harter
1985), a robust M estimator used here, is defined by ρ(x) =
|x|. Other M estimators worth mentioning, but not receiving
full attention here, are the Huber, bi-square, and Bell M esti-
mators (Berk 1990). The Huber estimator uses the LS objec-
tive function up to some predetermined residual value, and
beyond that uses the LAV objective function; the bi-square
estimator uses a function that initially increases quickly (like
Huber), but is constant after some residual value; the Bell
estimator is similar to bi-square, but with a smoother func-
tion that approaches a constant as its limit.

LMS is considered to be an S estimator, which minimizes
a type of robust M estimate of scale on the residuals (for de-
tailed description of S estimators, see Rousseeuw and Leroy
(1987)). Least trimmed squares (LTS), another widely used
S estimator, is LS performed after removing a user-defined

fraction of the highest squared residuals (Rousseeuw 1984).
Both LMS and LTS attempt to minimize some robust mea-
sure of scatter in the residuals.

Nonlinear analyses
In general, stock-assessment models are nonlinear. Robust

and resistant objective functions, although initially devel-
oped (like least squares) for linear models, can also be ap-
plied (like least squares) to nonlinear cases. Unfortunately,
minimization of the objective function (i.e., parameter esti-
mation) is usually much more difficult in nonlinear analyses,
particularly when the objective function is not smooth (Gill
et al. 1981). LMS, being an extreme case of a nonsmooth
function, poses a particularly difficult challenge in nonlinear
optimization (Stromberg 1993). In general, the properties of
LMS in nonlinear analyses have not been as thoroughly
studied as in linear analyses. In nonlinear analyses, LMS is
considered a high-breakdown estimator, but definition of the
breakdown point varies and breakdown analysis becomes
more complex (Stromberg and Ruppert 1992). Nonetheless,
LMS has been found useful for detecting outliers in nonlin-
ear regression (Stromberg 1993).

Robust methods in fishery management
Robust methods have been applied to several problems in

fishery science; we mention only some applications here. Chen
and Paloheimo (1994) compared the relative merits of LS,
LMS, LMS-based reweighted LS, and LAV for estimating
mortality rates and the catchability coefficient from catch and
effort data. Prager et al. (1995) used robust regression in fitting
length-conversion equations for billfish. Stock–recruitment re-
lationships have been analyzed with a variety of robust meth-
ods, using both simulated data and real data on several species
(Chen and Paloheimo 1995; Wang and Liu 1999). Robust
methods have been used in several studies to fit population dy-
namic models to time-series data. Such analyses have exam-
ined both surplus production models without age structure
(Chen and Andrew 1998; Chen and Montgomery 1999; Prager
2002) and assessment models of catch at age (Restrepo and
Powers 1997).

Trouble with LMS

In this section, we present four examples that demonstrate
inherent difficulties possible when using LMS as an objec-
tive function. The first two examples are based on simulated
data; the last two are based on real data.

Our first example demonstrates instability of LMS in a
linear regression problem. However, the potential for insta-
bility in LMS is not limited to linear regression. High-break-
down methods like LMS achieve robustness by essentially
ignoring outlying data, and such data may be signal, not
noise. Thus, the high-breakdown property can lead to poor
fits of distinct sections of data, especially when fitting auto-
correlated time-series data.

The remaining examples illustrate potential pitfalls when
using LMS to fit a logistic (Schaefer 1954, 1957) surplus
production model (here chosen to represent a nonlinear fish-
ery model) to simulated and real data sets on catch and rela-
tive abundance. The production model formulation, detailed
by Prager (1994) and reviewed by Quinn and Deriso (1999),
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postulates that the rate of biomass change follows the differ-
ential equation

(3)
d
d

2B
t

r F B
r
K

Bt
t t t= − −( )

Here, Bt is the population biomass at time t, Ft is the fishing
mortality rate at time t, r is the population’s intrinsic growth
rate, and K is the carrying capacity. Typically, F is converted
from fishing effort rate ft assuming constant catchability q so
that Ft = qft. Integrating eq. 3 projects biomass over time and
further integration (of FtBt) projects the corresponding yields
Yt.

Given observations on effort rates and yields, one can esti-
mate model parameters r, K, q, and B0. Estimates from sur-
plus production models can be used to derive management
benchmarks, particularly maximum sustainable yield (MSY)
and fishing effort at MSY (fMSY). Under the assumption of log-
istic population growth, = � �rK/4 and = �/( �)r q2 .

The method of parameter estimation is described in detail
by Prager (1994) and was implemented here with the com-
puter program ASPIC (Prager 1995). The fitting method is an
observation-error estimator conditioned on observed yield.
The estimator was originated in this context by Pella (1967)
and was termed the “time-series” method by Hilborn and
Walters (1992). Objective functions (LS, LAV, LMS) were
computed from residuals in the abundance index in logarith-
mic transform. In nonlinear LMS analysis, it can be ex-
tremely difficult to locate the global minimum of the
objective function. The software used requires repeated re-
starts of its algorithm to the same point to accept a solution,
even provisionally. For this study, the fitting software was
modified to repeatedly refit over a grid of initial guesses,
and the best solution so obtained was adopted.

In examining the results from the three objective functions,
we compare predicted and observed relative abundances. We
also compare the estimates of four quantities of management
interest: MSY, fMSY, F in the last estimated year relative to F
at MSY(F• /FMSY), and stock biomass in the last estimated
year relative to the stock biomass at MSY (B• /BMSY).

Example 1: instability in linear regression
In linear regression, LMS is robust to 50% contamination

of the data, providing a high breakdown point. However, this
does not mean, as one might expect, that LMS estimates are
insensitive to small perturbations in the data. To the contrary,
LMS estimates can be quite unstable (Hettmansperger and
Sheather 1992). Although they are insensitive to outliers,
LMS estimates can jump between solution regimes in re-
sponse to small changes in the data, as may occur when add-
ing new observations or with shifts in existing observations.

We demonstrate the potential for LMS instability in a
widely familiar setting: linear regression. We generated 31
pairs of (x,y) data according to

(4a) xi = i, i = 0,…,30

(4b) y

i

i

i
i =
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=
=
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We then fit the model Y = θ1 + θ2X by estimating θ1 and θ2
under three different objective functions: LS, LAV, and
LMS. On this data set, the three solutions are quite similar
(Fig. 1a). An interesting characteristic of LMS is that solu-
tions are not always unique, and here, two distinct LMS so-
lutions exist (Fig. 1a).

Two small changes in the data set illustrate the instability
of LMS. When the centrally located point (x15, y15) is in-
creased from (15, 1) to (15, 2), the LS and LAV lines hardly
change, but the LMS line changes markedly (Fig. 1b), from
y = –0.21 + 0.08x (or y = –0.29 + 0.08x) to y = 2, a horizon-
tal line! When, instead, the central point is decreased from
(15, 1) to (15, 0), the LS and LAV fits again change very lit-
tle, but the LMS fit jumps to y = 0, a second horizontal line
(Fig. 1c). This example demonstrates that LMS estimates
can be much more sensitive to small data changes than LS
and LAV estimates (Figs. 1a–1c).

By design, the LMS objective function essentially ignores
almost half the data. Thus, shifts in which points contribute
to the objective function can occur abruptly with small changes
in a single data value, leading to marked changes in parame-
ter estimates (Fig. 1d). In general, instability of LMS esti-
mates can occur whenever the data can be divided into two
partial samples with approximately equal residual values,
such that small perturbations can cause the LMS estimate to
shift from fitting one partial sample to fitting the other
(Hettmansperger and Sheather 1992).

Example 2: instability on simulated fishery data
The next example uses a simulated fishery data set to

demonstrate the potential instability of LMS in fishery mod-
eling. We generated time series of fishing effort, biomass,
and yield, assuming that stock dynamics follow eq. 3 with
r = 1, K = 1000, q = 1, and initial biomass B0 = 0.5K. The
applied F relative to FMSY first remains constant at a rela-
tively low level, then increases, and then decreases sharply,
as under a sudden, strong management regime (Fig. 2a). The
resulting trajectory of biomass declines in response to the in-
creased F, and then rebounds (Fig. 2b). The simulation pro-
vided a noise-free time series of yield, to which we added
simulated lognormal observation errors

(5)
~

exp( ), ~ ( , )Y Y v v Nt t t t= 0 2σ

We simulated observed yields
~
Yt using σ = 0.1, and thus gen-

erated a 19-year catch–effort data set. Using the LS, LAV,
and LMS objective functions, we then fit the surplus produc-
tion model in three ways: (i) to the first 15 years of simu-
lated data, (ii) to the first 17 years of simulated data, and
(iii) to the entire 19 years of simulated data. This is analo-
gous to repetition of a stock assessment when additional
data become available.

On the 15-year time series, the LS and LAV fits are very
similar (Fig. 3a), and produce similar estimates of manage-
ment benchmarks. However, the LMS fit is strikingly differ-
ent, reproducing eight of the data points quite well and
seemingly ignoring the other seven (Fig. 3a). The LMS esti-
mate of MSY is comparable to those of LS and LAV, but
LMS estimates of the remaining management quantities differ
considerably (Table 1). With two years of data added to the
time series, the LS and LAV fits change little, whereas the
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LMS fit jumps to a new solution regime (Fig. 3b). This jump
is reflected in the estimated management quantities (Table 1).
With an additional two years added to form a 19-year time
series, the LS and LAV fits still remain largely unchanged,
but the LMS fit jumps yet again (Fig. 3c). As before, shifts in
the LMS-estimated management quantities accompany the
change in fit (Table 1). In this example, each time the simu-
lated stock assessment is repeated as additional data become
available, estimates from the LMS objective function provide
a very different picture of stock dynamics and management
implications.

Examples using actual fishery data
The preceding examples used artificial data constructed to

illustrate troubles with LMS. We now demonstrate that simi-
lar fitting problems can occur on real fishery data sets. As
did Chen and Andrew (1998), we fit logistic surplus produc-
tion models to time series of fishery data. Our examples use
data on Atlantic menhaden (Brevoortia tyrannus) and barra-
mundi (Lates calcarifer). The following analyses are used

for illustration and are not intended to define status of these
stocks. Although data were obtained from reputable sources,
they may include preliminary or unpublished values, and no
attempt has been made to verify or update the data sets, nor
to compare results to those of other models that might be ap-
plicable.

Example 3: Atlantic menhaden
Data on Atlantic menhaden are those used in Vaughan et

al. (2002), and consist of total landings in weight and esti-
mates of F (on a weight basis), derived from virtual popula-
tion analysis, for age 2+ fish. Those derived estimates of F
were used instead of recorded data on fishing effort because
of the density-dependent catchability demonstrated in this
species (Schaaf and Huntsman 1972).

When the menhaden data are fit by LS, the fitted line of
relative abundance attempts to capture the high relative
abundances near the start of the time series (Fig. 4a). Be-
cause those relative abundances are somewhat inconsistent
with simple production model dynamics (Vaughan et al.
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Fig. 1. Examples of linear regression (Y = θ1 + θ2 X) using three different objective functions: least squares (· –), least absolute values
(– –), and least median of squares (LMS) (—). LMS can be nonunique and in (a) gives two solutions. Data (�) are (a) original data
(see text), (b) central datum shifted up, (c) central datum shifted down. (d) Sensitivity of LMS estimates, intercept �θ1 (—) and slope
�θ2 (– –), to changes in the Y value of only the central datum; remaining data as in Figs. 1a–1c.
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2002), the fit cannot capture the stock dynamics faithfully.
The LAV fit is similar to the LS fit in that the estimated dy-
namics approximate the observed data (Fig. 4b). However,
the LMS fit, which aims only at the lowest median residual,
essentially ignores the early high abundances, and in those
years it predicts much lower abundances than were observed
(Fig. 4c). The period of high abundance in the 1950s is well
documented in the menhaden literature (e.g., Schaaf and
Huntsman 1972; Ahrenholz et al. 1987; Vaughan et al.
2002) and is quite unlikely to be an error; thus, the LMS fit
conflicts with an important observed phenomenon.

Estimates of management-related quantities from LS and
LAV are similar (Table 2). The estimate of sustainable yield
(MSY) from LMS is similar to estimates from the other ob-
jective functions, but LMS estimates of other management
quantities are quite different. The LMS fit describes a stock
that supplies the same MSY at higher FMSY, which by neces-
sity would be applied to a smaller BMSY (Table 2).

Example 4: barramundi
Data on barramundi, 1973–1989, were extracted from table

4.1 of King (1995). Data are missing for 1976; our fitting
method accommodates the missing value of relative abun-
dance, and we assumed that the 1976 catch was equal to the
mean of the 1975 and 1977 catches.

Fits from LS and LAV display similar patterns, differing
mostly in the first year (Figs. 5a, 5b). The LMS fit is less
convincing, and resembles the fit to the Atlantic menhaden

data in that the initial period of high abundance is not fit at
all (Fig. 5c). Given the difference in fit, one might expect to
see large differences in management estimates from the dif-
ferent objective functions. However, that does not occur in
this case (Table 2). It appears that stock dynamics in the lat-
ter portion of the data set are sufficiently consistent with the
earlier portion that failure to fit the early portion (as in the
LMS fit of Fig. 5c) does not seriously affect the results.

Discussion

The goal of this study was to illustrate potential problems
with use of LMS as an objective function, particularly when
fitting time-series data. (We did not attempt to compare
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Fig. 2. Simulated data used to illustrate fitting problems with
least median of squares: (a) trajectory of relative fishing
mortality rate; (b) resulting trajectory of relative biomass.

Fig. 3. Production model fits to simulated abundance index data
(�) using three objective functions: least squares (· –), least
absolute values (– –), and least median of squares (—). “True”
underlying simulated values also shown (···). (a) Fits based on
the first 15 years of data, (b) fits based on the first 17 years, and
(c) fits based on the full data set (19 years).
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LMS to other objective functions as to bias or variance of
estimates: to do so would require extensive simulation stud-
ies.) We have encountered problems with LMS in our own
work, and given the increasing interest in robust methods in
general and LMS in particular, we believe that it is impor-
tant for fishery biologists to be aware of potential shortcom-
ings. A recurring pattern is that the LMS objective function
can ignore portions of the data in searching for the lowest
median residual. Such portions can be distinct sections of a
time series that carry signals of biological importance. This
is implicit in the definition of LMS, but it may not be appro-
priate for analysis of fishery time series.

At first glance, the problem of ignoring contiguous obser-
vations may seem of no importance when fitting non-time-
series data (e.g., length–weight data). However, the same is-
sue can arise whenever data cluster into distinct groups that
can be described by different parameter values. When more
than 50% of the data fall into one such group, the LMS solu-
tion can reflect only that group. When the data form two dis-
tinct groups, there will be two candidate LMS solutions,
potentially with very different parameter estimates, and the
choice between them will depend on the relative sample
sizes and dispersions in each group. Small data changes
(e.g., adding an observation) can move the solution from de-
scribing one group to the other, as illustrated in our exam-
ples and discussed by Hettmansperger and Sheather (1992)
and Ellis (1998). Any data set, even a noisy one, in which
roughly half the data define one set of parameter estimates
and the other half define a second set, would be subject to
instability as data are added or small changes made to cen-
tral values.

The desired property of LMS is its resistance to outliers.
However, resistance comes at a cost: loss of efficiency (i.e.,
slower convergence of the estimator to its true value with

increasing sample size). Stromberg (1993) summarizes re-
search on this topic, including a proof that the asymptotic
efficiency of LMS in linear regression is zero. That finding
is supplemented by simulations showing that, in linear re-
gression, LMS is quite low in efficiency compared to LS on
finite samples with normal errors (Rousseeuw and Leroy
1987). The tradeoff between resistance and efficiency is evi-
dent in other robust methods, and in general, higher break-
down is accompanied by lower efficiency (Berk 1990). In
general, such issues have been poorly studied in nonlinear
applications, in part because of the large universe of nonlin-
ear models.

A practical problem with the use of LMS is the difficulty
of finding the minimum of a LMS objective function, partic-
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Estimates

Objective function N MSY fMSY F• /FMSY B• /BMSY

True values 15 250 0.50 0.20 0.94
True values 17 250 0.50 0.20 1.56
True values 19 250 0.50 0.20 1.76

LS 15 271 0.64 0.19 1.54
LS 17 268 0.62 0.17 1.78
LS 19 261 0.59 0.21 1.80

LAV 15 266 0.65 0.20 1.50
LAV 17 251 0.59 0.20 1.71
LAV 19 250 0.59 0.23 1.77

LMS 15 251 0.29 0.36 1.00
LMS 17 125 0.42 0.49 1.36
LMS 19 244 0.40 0.28 1.52

Note: “True” underlying simulated values also shown. Quantities
estimated: MSY, maximum sustainable yield; fMSY, fishing effort rate at
MSY; F• /FMSY, ratio of final-year fishing mortality rate to that at MSY;
B• /BMSY, ratio of final-year population biomass to that at which MSY can
be obtained. LS, nonlinear least squares; LAV, least absolute values;
LMS, least median of squares.

Table 1. Comparison of estimated quantities from application of
logistic surplus production model to simulated data under three
objective functions and with three sample sizes N.

Fig. 4. Production model fits (—) to observed abundance index
data (�) on Atlantic menhaden (Brevoortia tyrannus) using three
objective functions: (a) least squares, (b) least absolute values,
and (c) least median of squares.
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ularly on nonlinear data (as here). This difficulty, which is
recognized in the statistical literature (Stromberg 1993), has
at least two components. First, the LMS objective function
is not differentiable, nor is it continuous, a situation that pre-
cludes the use of gradient optimization methods and makes
locating a global minimum much more difficult for other
methods (Gill et al. 1981). Second, the LMS solution to a
particular problem can be nonunique (as in our first exam-
ple), and even when the solution is formally unique, it may
be nonunique in practical terms. By that, we mean that many
LMS minima may exist, all with extremely small residuals.
In production modeling, we have found data sets with nu-
merous local minima in which the median residual was less
than 0.01% of the actual abundance-index value. As such
minima can correspond to markedly different sets of param-
eter values, we consider such solutions nonunique in practi-
cal terms. Differences in the LMS objective function among
such local minima can be small enough to result from nu-
merical issues such as roundoff error (in data entry or com-
putation) or choice of convergence criteria.

Because of the troubles associated with using LMS for fit-
ting data, we recommend that it be used in detection of out-
liers, rather than as a substitute for the usual least-squares
objective function in fishery population models. Outlier
identification is the use advised by Rousseeuw and Leroy
(1987), a standard statistical treatise on robust and resistant
linear methods. It has been advocated elsewhere in the fish-
ery literature (Chen and Paloheimo 1994; Chen et al. 1994;
Chen and Jackson 2000), though not always adhered to in
practice (Chen and Montgomery 1999). By placing LMS in
a diagnostic role, the analyst will be in a position to examine
LMS results and determine how they might be useful in each
particular case.

LMS offers two main advantages in outlier detection. First,
outliers cannot always be detected simply by plotting the data,
particularly in multivariate data. In such situations, LMS pro-
vides an objective method for diagnosis. Second, outliers may
exist in independent variables as well as (or instead of) in de-
pendent variables. Such outliers, called “leverage points”, can
have relatively small residuals, making outlier identification
based on these residuals misleading. At least in linear analy-
ses, LMS is robust to outliers in both dependent and inde-
pendent variables (Rousseeuw and Leroy 1987).

Once identified, outliers in fishery data can be corrected,
removed, downweighted, or perhaps included based on back-
ground information related to the investigation (Chen and
Jackson 1995; Restrepo and Powers 1997; Prager 2002).
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Fig. 5. Production model fits (–) to observed abundance index
data (�) on barramundi (Lates calcarifer) using three objective
functions: (a) least squares, (b) least absolute values, and
(c) least median of squares.

Species Objective function MSY fMSY F./FMSY B./BMSY

Atlantic menhaden LS 461 0.95 0.63 0.94
Atlantic menhaden LAV 530 0.86 0.69 0.83
Atlantic menhaden LMS 402 2.04 0.42 1.48
Barramundi LS 750 59.1 0.54 1.46
Barramundi LAV 747 58.0 0.54 1.47
Barramundi LMS 758 72.3 0.54 1.45

Note: Quantities estimated: MSY, maximum sustainable yield; fMSY, fishing effort rate at MSY; F./FMSY, ratio of
final-year fishing mortality rate to that at MSY; B./BMSY, ratio of final-year population biomass to that at which MSY
can be obtained. These examples are not intended to define the status of any stock. LS, nonlinear least squares; LAV,
least absolute values; LMS, least median of squares.

Table 2. Comparison of estimated quantities from application of logistic surplus production model to
fishery data sets under three objective functions.
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Then, the possibly modified data set can be fit by some
more efficient method, like LS (Rousseeuw and Leroy
1987). An alternative might be to fit all the data using a ro-
bust method that does not suffer the problems outlined for
LMS. For this, we suggest that investigators consider the
method of LAV. That method has the advantages of using
all the data and yet being more robust to outliers than LS. In
addition, it is relatively simple to implement and similar
enough to LS that it can be explained easily. A potential
drawback of LAV is that it is not robust to leverage points.
However, in the context of fitting time-series data, where the
independent variable is the year of observation, it seems un-
likely that leverage points would exist.

In conclusion, naive use of the method of LMS can be
dangerous, particularly when fitting time series or other auto-
correlated data. This danger applies to other robust methods
in proportion to their statistical resistance. The method of
LAV, though robust, does not share LMS’s high resistance,
and it may thus be more desirable. In all cases, it seems
preferable that outlier downweighting and subsequent fitting
be done through a process that involves human thought, and
not be relegated to an automatic procedure using a robust or
resistant method. The unquestioned value of such methods is
in detecting outliers. The decision to change or discount the
data is best left to the subject-matter expert.
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