Mary C. Fabrizio

tate University Press,

ieries 18(8): 11-21.

of Hudson River and
W. Barnthouse, R. J.
1 River Power Plants:
ociety, Monograph 4,

wating relative contri-
» American Fisheries

w York Bight Atlantic
e American Fisheries

1997 An empirical
Transactions of the

plications for mixed-
7: 968-976.

loci in mixed-stock
12-2098.

Temporal changes in

7. Global population
mitochondrial DNA

ornik, D. 2001, An
vest: test fisheries in

hondrial DNA poly-
sapeake Bay striped
American Fisheries

s. Canadian Journal

ntification with the
complex problems.

of sockeye salmon
d southeast Alaska
46: 2108-2120.

n of mixed popula-
nal of Fisheries and

CHAPTER 2 I

An Introduction to Statistical
Algorithms Useful in Stock
Composition Analysis

MICHAEL H. PRAGER AND KYLE W. SHERTZER

Population Dynamics Team, Center for Coastal Fisheries and Habitat Research, National Oceanic
and Atmospheric Administration, Beaufort, North Carolina, USA

1. The Problem and Its Terminology
1. Algorithms
A. Discriminant Analysis
B. Logistic Regression
C. Artificial Neural Networks
D. Finite Mixture Distribution (FMD) Methods
I11. The Importance of Prior Knowledge
A. Priors and Discriminant Analysis
B. Priors and Logistic Regression
C. Priors and Neural Networks
D. Priors and FMD Methods
IV. Discussion

References

I. THE PROBLEM AND ITS TERMINOLOGY

In many fisheries, catches include fish that are conspecific but that originate in
several spawning stocks. Because the population effects of fishing—and thus the
choice of suitable management approaches—depend on which stock or stocks
are harvested, estimates of stock composition of catches are needed. This need
has given rise to the set of techniques often labeled stock identification. The focus
of applications is usually on proportions in the harvest rather than on origin of
individual fish; consequently, a more precise description of this work is stock com-
position analysis.

Stock Identtfication Methods
Copyright © 2005 by Elsevier All nights of reproduction i any lorm reserved
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We define stock composition analysis as estimation of the stock composition
of a mixed-stock sample (usually,

, some part of the harvest) taken from a known

number | of component stocks. The proportion that originates in any given stock

J is represented P,. Thus T/_|P, = 1; within this constraint, any particular P, may

equal zero. The process by which the P, are estimated constitutes the stock com-
position analysis.

Data used for such analyses are observations on characteristics of individual
specimens; typical characteristics may include morphometrics, meristics, genetic
characters, or chemical signatures (reviewed in Begg and Waldman, 1999). When
we refer to characteristics here, we assume that they have been quantified in some
reasonable way so that statistics (such as mean and variance) can be computed
for the entire set (matrix) of observed characteristics. The probabilistic nature of
the methods considered here is needed to account for overlap in the distribution
of characteristics from different populations. When there is no overlap (as when
using tags), the origin of each fish can be established with certainty, and much
simpler methods can be used to define the stock composition of the catch.

This discussion also assumes the availability of a training sample of individu-
als whose stock membership is known. The training sample is used to fit a model
by means of the investigator’s choice of algorithm, a word used here to denote a
statistical method or group of related methods. The fitted model is then used to
estimate the stock composition of a mixed-stock sample (or samples) of the catch.
The estimation can, but need not always, involve estimating the probabil
stock membership of each individual in the mixed-stock sample. If in the course
of estimation each individual is assigned membership in a particular stock, the
method can be considered a classification method. Classification methods are a
subset of all methods useful for stock composition analysis, because stock com-
position can be estimated without performing a classification.

The terminology of stock composition analysis is specific to fishery science,
but the general problem is not. Analyzing characteristics of individual objects in
a mixture to estimate the mixture’s proportions is a general statistical problem
known as finite mixture analysis. Constituent fish stocks in a mixed harvest are
Just one example of constituent classes or statistical populations of mixed objects;
here, we tend to use the term class when describing algorithms generally, and
stock. when describing fisheries applications. Estimating stock composition is
therefore a special case of the general problem of estimating mixing proportions.

We continue this chapter by introducing some algorithms useful for stock
composition analysis. We then discuss issues involved in estimating performance
of various algorithms, either in an absolute sense or relative to one another on a
particular data set. We close with a few general comparative remarks.
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II. ALGORITHMS

Many statistical algorithms have been proposed or used for stock composition
analysis. We consider four—discriminant analysis, logistic regression, artificial
neural networks, and finite mixture distributions—each of which may incorpo-
rate more than one observed characteristic. Variants of each algorithm exist, but
since we focus on the conceptual basis of each algorithm, our treatment of such
variants is generally brief.

A. DISCRIMINANT ANALYSIS (DA)

Among classification schemes, discriminant analysis (McLachlan, 1992, Johnson
and Wichern, 1998: Hastie et al., 2001) boasts the longest history. Its two most
common forms are linear discriminant analysis (LDA) and quadratic discriminant
analysis (QDA). Linear discriminant analysis was the first formal statistical
method used for stock composition analysis (Hill, 1959), and the method has
been used many times and in many variations. One of its advantages is the wide
availability of well-tested and flexible software, as discriminant analysis forms an
important component of most major statistics packages.

The fundamental assumption of LDA is that observed characteristics follow a
multivariate normal distribution with common variance—covariance structure
among stocks. 1f the characteristics vector is represented X, we can write this dis-
wibution for stock j as f(X) ~ MVN(W, ) where W, is the mean characteristics
vector for stock j and T is the common variance—covariance matrix. Typically, £
and w,, j=11,...,J} are estimated from the training set, and those estimates are
used in forming discriminant functions.

Classification in LDA is determined from stock-specific linear discriminant
functions, computed from three types of information: an individual’s character-
istics vector x; estimates of p; and X; and a set of prior probabilities, or priors, p,
j={1,...,J}. The priors are the analysts ¢stimates (which may be subjective) of
the probabilities that a randomly chosen fish originates in each of the j stocks.

The discriminant function for stock j, evaluated for individual x, is

, 1.,
§0=x"Zp, _Eul’ 7w +log(p)) (M

where the notation M indicates the transpose of vector or matrix M. The quan-
tity —8,(x) measures the distance from individual x to the center of stock j (the
function is conventionally in negative distance for computational reasons). In
classification, each individual is assigned membership to the stock that maximizes
8,(x), which is the stock with the closest center. This is also the stock with the
largest posterior probability (eq. 3 of Pella and Masuda, this volume, Chapter 25).
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The J discriminant functions thus define decision boundaries that classify an
individual, from its observed characteristics, to the most likely stock of origin.
The decision boundary hetween stocks jand k occurs where 8,(x) = §,(x), and it
is this decision boundary that, when solved for X, is linear in the observed char-
acteristics. If there are two measured characteristics, the decision boundary is a
line; if three, a plane, and so on.

Quadratic discriminant analysis (QDA) is often considered preferable for prob-
lems in which the variance—covariance structure differs by class (Misra, 1985),
as QDA does not assume equality of variance among classes (Kendall et al., 1983).
However, estimates from QDA generally are of higher variance than those from
LDA because of the additional parameters that must be estimated.

The quadratic discriminant function for stock j, evaluated for individual x, is

1 1 -
5_,-(x)=~ElogiZ,I—E(X—u;)1 T - ) +log(p,) @)

where X, is the stock-specific variance—covariance matrix and IZ[ is its deter-
minant. Classifications and posterior probabilities of class membership are
computed as in LDA.

The decision boundary in QDA is defined as in LDA, but the resulting bound-
ary is quadratic (curved) in the observed characteristics. For that reason, deci-
sion boundaries for LDA and QDA generally differ (Fig. 24-1).

In using either linear or quadratic discriminant analysis to estimate stock
composition, one can proceed in two slightly different ways. The usual
procedure, which we term discrete classification, is to classify each individual in
the (mixed-stock) sample into the class for which its estimated membership
probability is highest. The estimate of stock composition is then formed from the
relative numbers of individuals classified into each class. In the second proce-
dure, which we term nondiscrete classification, the probability of membership in a
particular class is summed across all individuals. The estimate of stock compo-
sition is then obtained from the sums for each class divided by the total
sample size.

As a simple example, consider a two-stock problem in which three fish are in
the mixed-stock sample. Let the estimated probabilities of membership in class
L for the three fish be {0.55, 0.45, 0.8). The discrete estimate of mixing propor-
tions would be 2/3 from class 1 and 1/3 from class . The nondiscrete estimate
would be 0.6 from class 1 and 0.4 from class 11. The discrete estimate is obtained
because two of the three fish are thought more likely to belong to class I; the
nondiscrete is the mean of the three probabilities given.

Although discrete and nondiscrete classification usually produce similar esti-
mates, it seems logical to prefer nondiscrete classification. There is no necessity
to round estimated membership probabilities to whole numbers, as done in dis-
crete classification, when the objective is to estimate mixing proportions.
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FIGURE 24-1. Example of decision boundaries between stock j (filled circles) and stock i (open

circles) from lincar (dotted line) and quadratic (solid line) discriminant analysis based on two

0.6
observed characteristics (X, X.). The prior probabilities arc p, = p.= 0.5; the means are |j = (0 75]

08 v . » 1.5 -0.25
and ui:( . the variance—covariance matrices are  Ij = 0.25 125) and

-0.5

1.8 -0.2 1
T _( 02 20 ); and, with equal sample sizes, the pooled matrix £ for the linear boundary is

the mean of Z, and Z.

Several other variants of discriminant analysis have been applied to stock iden-
tification; these include polynomia\ discriminant analysis (Cook and Lord, 1978),
age-invariant  discriminant analysis (Fabrizio, 1987), jackknife discriminant
analysis (Small et al., 1998), and stepwise discriminant analysis (Palma and
Andrade, 2002). Correction matrices, which can be computed from classification
results on a test data set, are frequently used to improve mixture estimates from
discriminant analyses (Cook and Lord, 1978; Pella and Robertson, 1978) and
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might be used to correct estimates from other classification-based methods as
well. Millar (1987) demonstrated that the use of classification with correction is

a special case of maximum-likelihood finite mixture distribution methods
(described below).

B. LOGISTIC REGRESSION

Logistic regression (Aldrich and Nelson, 1984; Hosmer and Lemeshow, 1989;
Agresti, 2002) is a type of gencralized linear mode! (McCullagh and Nelder,
1989). It was suggested for stock identification by Prager and Fabrizio (1990),
who found the method promising. Its chief theoretical advantage is that it
assumes neither multivariate normality of input data nor equality of variances
and is appropriate for a wide variety of distributions (Kendall et al., 1983). It can
also handle input data that are continuous, categorical, or a mix rather than con-
tinuous only, as in discriminant analysis. Logistic regression is applied most often
to problems with a binary response, as when analyzing mixtures of two source
stocks. But its use is not limited to binary problems, and indeed logistic regres-
sion has been applied to stock identification problems with more than two stocks
(Prager and Fabrizio, 1990; Waldman et al., 1997).

In binary logistic regression, the response (Y,) for fish i takes one of two values:
Y, = 0 implies membership in the first stock, and Y, = 1 implies membership in
the second. The probability that fish i with N measured characteristics x, = (x;,

Xz, - -, Xix) belongs to the second stock is estimated by the continuous logistic
function &,

POV, = 11x) = mx) = —2DRD) ®
1+exp(z))
where
2i =PBo+Bixa +Baxi+ - +Pyxiy )

and the B’ are parameters to be estimated (Fig. 24-2). The analysis defined by
eq. 4 is called multiple logistic regression, which refers not to the number of
stocks, but to analyzing more than one characteristic per fish (i.e., N> 1). A suit-
able transformation, accomplished by use of a link function, converts the model
of eq. 3 into one that is linear. Several standard links exist for binary data, such
as logit, probit, or log-log (Agresti, 2002); we present here the logit link because

it is most often applied in polytomous logistic regression (more than two classes).
The logit link is

7(x;)
108(1__:(;5) =Bo +Bixn +Baxia+- - +PBrxin ©)
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1.0
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0.6

0.4
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FIGURE 24-2. Logistic transformation shown in eq. 3. In logistic regression for stock identifica-
tion, z is an unbounded linear combination of the measured characteristics. The value of the trans-
formation T is the estimated probability of membership in the second of two stocks.

After transformation, errors are assumed to be distributed binomially, and para-
meters can readily be estimated by maximum likelihood using standard statisti-
cal software.

If there are more than two classes, binary logistic regression can be extended
to polytomous logistic regression (Hosmer and Lemeshow, 1989; Agresti, 2002).
The major difference is that now errors are assumed to be distributed multino-
mially rather than binomially. Classification among J stocks requires ] — 1 link
functions, which is no different from the binary case. For stock membership

ji=1,....]

exp(z;)
POV, = 1) =T, (x) = )
Loy expzin)
where z, are analogous to eq. 4 but with parameters By, By, . . . , By The problem
is constrained by the requirement that the probabilities of stock membership sum
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to one. Given J — 1 estimates of ,, the Jth estimate must be my(x) =1 - Tin(x,).
That constraint is implemented by defining parameters for the jth stock to be
zero (i.e., By, Bisr. .., By = 0). As a result, eq. 6 simplifies because exp(z)) = 1,
and the 7s can be estimated under transformation by a link function. As in the
binary case, there are J — | unique logit equations,

0 (M)=Bo, +Bryxn +Bayxia + - +Brxin (7
1Y (X‘)

Computer programs for logistic regression are readily available in the major
statistics software packages. In using such software, the analyst usually wishes to
specify that the stock designations are nominal rather than ordinal values. Careful
reading of the software’s documentation may be needed to effect that choice,
which is not always the default.

C. ARTIFICIAL NEURAL NETWORKS

The term artificial neural network (ANN) is not a precise one, but refers to a group
of computational algorithms that sift through and combine many models 10 arrive
at a model of optimum (in some sense) complexity (Ripley, 1996; Hastie et al..
2001). Unlike the other classification schemes presented here, ANNs are non-
parametric. They require no assumptions about the distribution of data nor the
particular functional relationship between model input and output. This can be
a major advantage when such assumptions would be violated. Nonetheless, the
success of such methods still depends on similarity of the data in the mixed-stock
sample to the data in the training set.

Artificial neural networks have been developed in analogy to the structure of
the human brain. Like the brain, an ANN consists of interconnected layers that
process information provided by neurons. The input layer performs computa-
tions on the input data, and the results, along with a constant (bias), are then
passed to a hidden layer. That procedure is iterated among a series of hidden
layers until finally results are passed to the output layer. The number of hidden
layers and the number of neurons in each can be adjusted to reflect the com-
plexity of the problem. Once the architecture is established, values of network
parameters are chosen as those that minimize some fitting criterion, a task usually
accomplished with a learning algorithm.

Neural networks have proved useful in numerous fields, such as artificial intel-
ligence, image compression, medical diagnosis, nondestructive testing, signal pro-
cessing, and terrain classification, to name only a few. To our knowledge, the first
published application in stock composition analysis was by Prager (1984, 1988)
to estimate stock composition of striped bass and American shad. That study used
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Input Hidden Output
layer layer layer

Bias Bias

B b ﬂk

FIGURE 24-3.  Example of an artificial neural network with a single hidden layer. The input vari-
ables (X,) are the measure characteristics. Their weighted (w,) values plus a bias term (B,) are

processed by the hidden layer, and in tumn, those results are processed similarly by the output layer.
The final result is probabilities of stock membership, among two stocks in this example.

the group method of data handling (Ivakhnenko and Ivakhnenko, 1974), a type
of neural network based on polynomials. More recent studies have compared the
performances of ANNs and LDA and have found ANNs to be slightly more suc-
cessful, at least on the particular data sets analyzed (Taylor and Beacham, 1994:
Thorrold et al., 1998; Wells et al., 2000).

In the context of stock composition analysis, the input variables for an ANN are
the measured characteristics; the output is the stock classification. Figure 24-3
illustrates a neural network with a single hidden layer that classifies a sample into
two component stocks based on three characteristics. Each neuron in the hidden
layer sums the weighted (w,,) input signals (X,, X,, X;) and adds a bias term By
The result is then processed by a hidden-layer function (f;) to produce an input
signal for the output layer. The procedure is the same at the output layer, but with
an output-layer function (f,). Figure 24-3 can be expressed mathematically as

Y = f()(Bk + Z Wik fH (Bh + zwub Xa )) (8
b ua
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where Y, is the probability of membership in stock k. Any monotonic smooth
function can be used for fi, or fo, and they need not be the same, but the most
popular by far is the logistic function of eq. 3.

Because of the complexity and specialized nature of the calculations, applica-
tion of neural networks is generally made with specialized software. Because the
methods are not standardized, different programs may offer different procedures
and different results. For that reason, it may not be possible to duplicate exist-
ing results unless the same software is used, a situation that differs markedly from
the other methods described here.

D. FINITE MIXTURE DISTRIBUTION METHODS

Discriminant analysis, logistic regression, and neural networks can be considered
classification-based algorithms because their focus Is on an estimated classifica-
tion of each individual (to stock), at least probabilistically. Those methods esti-
mate, for each individual, the probability of membership in each class, and the
estimates of composition—the desired results of fish stock composition analy-
sis—are derived from the estimated membership probabilities of the individuals.
The final set of algorithms discussed here, methods based on finite mixture dis-
tributions (FMD), does not share that focus on individuals. (Here finite refers to
the number of classes in the mixture.) Although the probability of an individual’s
group membership can be estimated from finite mixture methods, the primary
focus is on estimating the composition of a mixed sample (mixture distribution).
This difference in focus is important.

Maximum-likelihood estimation of finite mixture distributions has been
the subject of several books in the statistical literature (Wolfe, 1970; Everitt
and Hand, 1981). The methods were introduced to the fisheries literature to sep-
arate size compositions into age classes (Cassie, 1954, Bhattacharya, 1967).
Application to stock composition analysis came later (Fournier et al., 1984: Pella
and Milner, 1986; Millar, 1987; Wood et al., 1987). The methods are simplest to
apply if one assumes that characteristics follow a multivariate normal distribu-
tion with a common covariance matrix among classes, the same assumption used
in linear discriminant analysis. However, EMD methods can be adapted to a wide
variety of distributions and can accommodate unequal covariance matrices (e.g.,
DeVries et al., 2002).

A finite mixture distribution (/) describes the distribution of a vector (x) of N
observed characteristics. The mixture distribution J can be expressed as a
weighted sum of its J component probability distributions ¢, j=1, . . . . J (where
as before J is the number of stocks). For example, a mixture of multivariate normal
distributions with unequal variances can be written,
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J

fxlpw )= pg(xln;, X)) 9
j=1

Here p = (pi, p»,..., pju) are the J = 1 independent mixing proportions, or

weights, of the component distributions such that 0 < pi<landp=1-Zlp,
The W, and X are the mean vector and variance~covariance matrix of the jth com-
ponent distribution.

In a stock composition analysis, the mixed-stock sample is from the mixture
distribution (f) of characteristics. The goal is to estimate mixing proportions (p,);
to do so, one must first estimate (from the training set) the parameters of the
component distribution (g) of each constituent stock. The mixture distribution
observed in the mixed-stock sample depends hoth on the parameters (shapes) of
the stock-specific component distributions and on the mixing proportions in the
mixed-stock sample (Fig. 24-4).

0.6
0.4
X .
0.2 H
0.0 : T T T T
-4 -2 0 2 4
0.6
0.4
x .
0.2
0.0 I T T T
—4 -2 0 2 4
X

FIGURE 24-4.  Mixture distributions with the same component distributions in different propor-
tions. Each mixture is of two univariate normal distributions: stock one with Hy=-1.0,06,=1.0,and
stock two with y, = 1.5, 6, = 0.5. The mixing proportions are pu=0.25, p, = 0.75 in the top panel,
and p; = 0.75, p, = 0.25 in the botiom pancl.
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Practical Application of FMD Methods

Software for mixture problems scems less readily available th

an software for fitting
discriminant functions, logistic regressions,

and even neural networks, a
situation that may have slowed the wide adoption of FMD methods in

fisheries. However, R. Millar has developed Fortran software, HISEA, that,
as of the date of writing, was available on the World Wide Web.
(h[tp://www.slat‘auckland.ac.nz/~millar/mixedstock/codc,html). Millar’s software
implements the FMD method under the assumption of multivariate normality

with constant variance. Other suitable software (¢.g., EMMIX by G. Mclachlan)
may also be freely available.

It may not be obvious (hat commercial softw,
also be used to obtain maximum-|
Thus, any analyst with access to
properties of FMD estimates.

To proceed in this way, it is sim
istics are multivariate normal with

are for discriminant analysis can
ikelihood FMD estimates of stock composition.

standard statistical packages can explore the

plest to assume that the measured character-

4 common covariance matrix across stocks
Under that assumption, the equations for LDA and FMD are identical, with the

mixing proportions to be estimated by FMD corresponding to the the correct (but
unknown) priors in LDA. By using an EM algorithm (Dempster et al., 1977),
maximume-likelihood estimates of the mixing proportions can be obtained under
the FMD model. As noted by Millar (1987), *. . 'in constructing a classification
rule, one is actually doing all of the work required to construct the likelihood
function, so from there it would be a matter of simply running a maximization

program to obtain the maximum likelihood estimates.” The procedure is as
follows:

L. Fit a linear discriminant function to the training sample.

2. Obtain a starting guess for the priors. In the absence of other
information, one can use equal priors, that is, set pi=1/] for

3. Using the current priors and the
make a nondiscrete estimate of ¢
mixed-stock sample.

4. Revise the priors 10 equal the current estimated mixture
5.

all j.
discriminant function fit in step 1,
he mixture proportions of the

proportions,
Repeat steps 3 and 4 unil the composition estimates converge.

Without doubt, this procedure is more tedious than using software written
specifically for the estimation of mixing proportions. However, if such software
is not readily available, or if an investigator wishes to take the first sleps into
using FMD methods, this iterative procedure may prove useful.
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HI. THE IMPORTANCE OF PRIOR KNOWLEDGE

Each classification-based method described above (discriminant analysis, logistic
regression, neural networks) either makes implicit use of properties of the train-
ing sample or requires additional assumptions to estimate stock composition. In
the case of discriminant analysis, the composition estimates are conditional on
the prior probabilities of stock membership (the p, in eq. 1) specified by the
analyst. Perhaps because standard software offers defaults for these priors, their
importance is often overlooked. Nonetheless, the reliance on priors—or equiva-
lent information from the training sample—is a major limitation of the classifi-
cation-based methods. For that reason, we emphasize here the role of priors in

discriminant analysis and the role of analogous information in other classifica-
tion algorithms.

A. PRIORS AND DISCRIMINANT ANALYSIS

Priors, as used by discriminant analysis, are a priori estimates of the probability
that an individual in the mixed-stock sample is a member of each component
stock. By a priori, we mean that the individual is chosen at random from the
mixed sample and that nothing further is known about 1t its characteristics have
not yet been observed. 1f we assume that the stocks are present in the mixed-
stock sample in proportion to their presence in the mixture under consideration
(except for sampling error), the paradox involved in using discriminant analysis
for this problem becomes clear. The priors, which are required to make an esti-
mate, are precisely what we are trying to estimate: the relative contribution of
stocks in the mixture.

This paradox does not occur in some other fields that use classification
methods because the structure of their questions is fundamentally different.
For example, a typical medical application might be 10 estimate the probability
of a patients contracting some disease, given observations about general
health and family history. In that example, the proportion of the general popu-
lation that will contract the disease is well known and can be used as the prior.
The focus of such a study is estimation about the individual. In such applica-
tions, reliable priors are readily available, and classification methods are appro-
priate. Notably, their use does not entail the same paradox as in stock composition
studies.

In discriminant analyses, priors are specified explicitly, and composition esti-
mates cannot be made without them. Statistics packages commonly offer two
simple tactics for generating priors. The first tactic is to base priors on the pro-
portions observed in the training set. Under that approach, the prior for a given
stock is set equal to its relative predominance in the training sample. The unstated
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C. PRIORS AND NEURAL NETWORKS

Estimation of stock composition by neural networks is also conditional on the
composition of the training sample. Therefore, bias of these estimators should be
similar to that from logistic regression. The ultimate performance of such a
method also depends on the particular data and specific method involved. As
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with logistic regression, it seems that the use of correction matrices with neural
networks has not yet been studied, at least in fishery science.

D. PRIORS AND FMD METHODS

Finite mixture distribution methods do not require priors, implicit or explicit. It
stands to reason that, in most cases, they should produce estimates with lower
bias than uncorrected classification-based algorithms. This may be accompanied
by increased variance.

IV. DISCUSSION

The four methods presented here are familiar techniques in stock composition
analysis. However, other classification methods exist and may hold added
promise for fisheries. One nonparametric technique is tree-based regression
(often called CART), applied 1o stock classification by Weigel et al. (2002). A
quite different approach is analysis of tagging data for stock composition
(Schwartz, this volume, Chapter 28).

Evaluation of statistical algorithms for stock composition analysis is not a
simple task, whether undertaken on simulated or real data. What has been under-
emphasized in some such evaluations is how an estimator performs as the com-
position of the mixed-class sample varies from that of the training sample. One
would expect the error of uncorrected discriminant analyses to become consid-
erably worse as the true composition varies from the priors. A similar deteriora-
tion in performance of uncorrected logistic regression or neural network estimates
will occur as the true composition varies from that of the training sample. The
error rate of FMD methods may deteriorate as the composition of the mixed-stock
sample becomes quite different from that of the training sample, but variation in
the composition of the mixed-stock sample does not constitute violation of a
major assumption, as it does with the classification-based methods.

The analyst should always be aware of the chosen algorithm3 assumptions and
the degree to which they are met. Gray (1994) showed that in FMD applications,
model misspecification can lead to poor estimation. For example, if unequal vari-
ances are assumed equal, or if skewed distributions are assumed normal, FMD
results may be strongly biased (Gray, 1994). Similar problems can arise with any
algorithm if assumptions are violated. Moreover, bias and variance are statistical
properties, and there is no assurance that a specific algorithm will be more accu-
fate or precise than another in a particular application. To some degree, proper-
ties of algorithms in specific applications can be examined through Monte Carlo
simulation studies.

R N e
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From the preceding, it can be seen that for the stock ¢
fisheries, uncorrected methods appear least desirabl
more appropriate than methods based on classification, provided assumptions are
met. Millar (1990) concluded that corrected classification estimators are as useful
as FMD methods when the number of stocks is small (two or three), but rec-
ommended use of direct maximum-likelihood estimation (FMD methods) for
more complex problems. We concur with that recomme
recommend that when error rates are estima

omposition problem in
e, and FMD methods appear

ndation, and we further

ted, they should be reported based
on a range of priors (or their equivalent), if used, and over a range of (simulated)
stock compositions,
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